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Abstract. Yang-Baxterization of Faddeev—Reshetikhin-Takhtajan (FRT) algebra leading to
quantum YBE is considered for a class of R-matrices which satisfy Hecke relations. ‘We
apply such construction to the gi{N) case together with its multiparameter deformations
revealing the connection between FRT relations and the extended trigonometric Sklyanin
algebra. New realizations of FRT algebra through g-oscillator modes are presented, and
their potential importance in the context of quantum-integrable models is discussed. A
multiparametrized R-matrix with the inclusion of spectral parameter is constructed as a
by-product.

1. Introduction

The theory of quantized algebra and the related quantum group structures have now
become a well established discipline in mathematical physics with a wide range of
applications [1]. These structures have appeared in the literature in several related
forms [2-5). A rigorous mathematical formulation was given by Jimbo [4] and Drin-
feld [5] by defining them as one-parameter deformations of a universal enveloping
algebra of a Lie algebra. This rather formal approach was later put into a more
physical form by Faddeev, Reshetikhin and Takhtajan (FRT) [6], which was closer to
the theory of integrable systems and based on the notion of quantization of the func-
tion space defined on the quantized manifold of a Lie group. Exploiting the duality
condition of a Hopf algebra, the FRT algebra may be formulated through some basic
relations like

R L LE = [P Rt (1.1a)

RV L) = L LY RY (1.1b)
The associativity condition of the above algebra gives

RYL,RY,RY, = RLRERY (1.2)

leading to the braid group representation for the matrix Rt = PR*, P being the
permutation operator. These algebraic relations are quite general and able to produce
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quantum algebras related to various Lie groups as different realizations, depending
on the corresponding solutions of the R*-matrices {7, 8).

However some natural questions may arise at this juncture. Firstly, we note that
the notion of a spectral parameter is absent in the above picture and therefore we may
ask whether a spectral parameter-dependent approach can be adopted for extracting
all these seemingly different-looking relations from a single equation. Another inter-
esting question is why only the relation (1.1b}) appears in the FRT algebra and not
its complementary one, R+ L™ L{H) = Lg+)L(1‘)R+. This latter point was already
raised by Macfarlane and explained by Burroughs [8] as being due to the consequence
of quasitriangularity of the quantum double.

In the subsequent development of this subject, a consistent multiparameter de-
formation of the R-matrix and the corresponding quantum group were suggested by
several authors [9-11]. Since such deformations of R-matrix and L*) operators do

nnt affart tha algahrair ctruectura 1 1-,Y and 1 ThY tha nuactinneg raicad ahnega with

L A " YL ﬂlsUUlﬂl\-’ L R \L-Lu} ariv l\l-lll}, Ml \.lu\.«)l.lUlID LALLM GUWIYA ¥YRLEL

emphasis on the parametrization problem are also relevant for this deformed case.
For addressing thesc problems we focus on the standard quantum Yang-Baxter

equation (QYBE) involving spectral parameters A, y:

RO = W) Ly(N Ly(p) = Li(w) L(NRA - ) Li=Llel L,=19L

1
\5.3)

and explore its relation with the FRT algebra. The K(A)-matrix appearing in (1.3)
satisfies a scalar-type Yang—Baxter equation (YBE)

Rip( M) Ryg( A + 1) Rog(p) = Rog(u) Rys( A + ) Ryp(A) . (1.4)

The above QYBE is a key relation in quantum-integrable theory, where L(A} having
non-commuting matrix elements represents the related Lax operator. The observation
that YBE (1.4) is similar to the relation (1.2) and goes to it in the limit A, gz — oo,
might serve as a motivation for also obtaining the FRT relations at some limits of
the spectral parameters from QYBE (1.3). A generalized L(\) operator was recently
considered by us [12] for generating a class of quantum-integrable models through
an extension of the Sklyanin algebra {3] at its trigonometric limit. Curiously we find
that the same () operator, corresponding to the R{\)-matrix in the fundamental
representation of gi(N), is able to reproduce the FRT relations from QYBE, along
with an additional equation related to the form of Macfarlane’s query.

Looking now to the same problem in the reverse way opens up, interestingly, a
possibility of Yang-Baxterization of the FRT algebra leading to the QYBE (1.3). It
appears that the Yang-Baxterization related to QYBE, an important construction in
the context of quantum integrable models, has received much less attention compared
to the usual Yang-Baxterization {13, 14] leading to the YBE (1.4). We observe that
for the specfic forms of R(\) and L(A) considered here, such Yang-Baxterization
may be carried through only when the corresponding R*-matrices satisfy the Hecke
relations. It also turns out that this extra Hecke relation is equivalent to the ‘initial
condition’ of the R())-matrix and relates the FRT aigebra with the additional equation
obtained by us. Coming now to the multiparameter deformed cases, one may note
that such deformations of R-matrices for the fundamental representation of gi(N)
equally satisfy the Hecke algebra and therefore the above Yang-Baxterization scheme
of FRT algebra is also applicable to these deformed cases leading to the QYBE. This
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naturally shows that the multiparameter deformations, suggested basically for the
spectral parameterless R-matrices, can also be extended to include such parameters,

This Yang-Baxterization reveals that the extended trigonometric Sklyanin algebra,
obtained earlier in connection with the integrable models [12], is intimately related to
the FRT algebra. We show further that such Sklyanin algebra generalized for gi( N)
and its multiparameter deformations can be realized through g-oscillator modes in-
troduced by several authors in the recent past [15], which also consequently gives

new realizations of the FRT algebra in g-oscillators. 'The contents of the paper is as
indicated in the titles of the subsequent four sections.

2. Relation of FRT algebra with QYBE and extended trigonometric Sklyanin algebra

Since our objective here is to explore the relation of the FRT algebra (1.1) with
QYBE (1.3) involving spectral parameters, we intend to follow somewhat similar rea-
soning of Sklyanin, where a form of L{A) operator was suggested for deriving a
spectral parameterless quadratic algebra [3]. In particular, for the known R-matrix
corresponding to the spin-3; XXZ chain

3
R()\):Zwiai®ai ag,=1
=0

2.1
1 sina(A + 1) sin a A
WiTwa=g o Wk W= oo Wemws =g

the L-operator taken in the form L = $°_ | w,S;0,, yields from QYBE (1.3) the
trigonometric Skiyanin algebra (TSA):

[Sp, S5l =0 [Sy,S4] = Fran?(a/2)[S,,Sal, 22
[S3, S1) = £[S;, Sy, [S,,5_]=45,3,. ‘

However we observe that for the same trigonometric R-matrix (2.1) if the L())-
operator solution is given in the form

L+ -
£t &7 T21
L)) = (f . Loty ers (2.3)
12 g2 2
where ¢ = e~!*4, from QYBE one gets another spectral parameter-free algebra
[712: 7o) = —2isin & (rf 7y — 17 7})
iy = ety @4
£ Fie, 9
TET = eF! TiiTi
*

with all operators v° commuting among themselves. It is worth noting that the above

algebra (2.4} is an extension of the TsA and reduces to it in the particular symmetric

case t; = —7", 7t = —7 with the mapping
1 i
+ T & T = -—— 8§ Tia=S5, ,71y = .
T t+N cos(a/2) 3 1~ T sin(a/2) 0 12 + T =S
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The construction for L({X) (2.3) may be viewed as the ‘msertion of independent
operators {7} in the basis of loop algebra e;;(n) = £"e;;,1,j € 2, with (e;))ur =
6,k6 j1» where terms up to e(x1} only are kept guided by the powers of £ appearing
in the structure of R(A). Note that L(\) in this form may be considered naturally
as the Lax operator of some generalized quantum-integrable model corresponding to
the R-matrix (2.1). We have found in earlier occasions that different reductions of
this particular ancestor model with suitable bosonic (or g-bosonic) realizations are
able to generate a series of quantum-integrable systems including the sine-Gordon
model, the Liouville model, the massive Thirring model, a novel derivative nonlinear
Schrodinger model etc [12].

Interestingly we find that such an L(A)-operator may also play significant role
in the present context. For this purpose we recall first that under the A-dependent
‘symmetry breaking’ transformation [16] RJ}* — Rp"® = eleMktn-1-m)/2 pmn
for the charge-conserving case m +n = k + [, a new R-matnx is generated from
the original one satisfying YBE. 1t may be noted that such a transformation when
expressed in the matrix form looks like a ‘gauge transformation’, and in particular for
the case (2.1) takes the form

RA-—w)= AN @ AW RN -w)AT (M) @ A7 u) AN =ee'/2 25)

One finds that the R*-matrices involved in the FRT construction may be obtained
from this transformed R-matrix in the limit A — +ico and may be expressed as [17]

q
-1

RO = -é-m —¢r~  Rr=| )} 170 R~ = P(R*)"!
q

(2.6)

where ¢ = e'®. We observe now that, to be consistent with such transformation,
the L(A)-operator as a solution of QYBE must also change through a similar ‘gauge
transformation’ L(\)} = A(A)L(A)A~}()), for which our Lax operator (2.3) takes
the form

) + -
L)) = %.LH} + L) L) = (7(1] :E}) L) = (71 0_) k)

Tiz T2

It is worth observing that the L(X) with operator-valuecl matrix elements constructed
D7

haora allnue o clemilar avnancinn I in tha cnartrn]l naramatar wharo tha ftrianan,
11 cl.l.lUWa a allllllﬂl C]\Pallblull aﬂ ‘Lk/‘} il Wl oy\'\.«ual Pﬂlﬂlllvlvl’ Tilwl v Wiv Llaligws

lar matrices L(%) are analogous to R*. To make their relation with FRT algebra more
transparent we insert the expansion (2.6) and (2.7) into the QYBE (1.3) and match the
coefficients in the different powers of the spectral parameters, which finally results
the following equations:

RE L(i)L(i) = L(i)L(i}Ri (28(1)
R:I:L(i L(:F) L(:F)L(:i: R* (28b)
along with

RFLOLY - VLR = RELV LY - LTVLVRT. @9)
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It is interesting to note that (2.8az) and (2.86) are the same cquations as the FRT
algebra (1.1), while (2.9) is an extra relation. This particular relation demonstrates
that R* L(l"}Lg"’) - Lg+)L£')R+ = 0 does not hold in our case, justifying Macfar-
lane’s query and moreover relates it to another similar expression. Along with the
above connection between the FRT algebra and QYBE it is also evident through this
construction that the elementwise form of the FRT algebra, expressed through L)
(2.7), represents the same extended trigonometric Sklyanin algebra (2.4).

3. Yang—Baxterization of FRT algebra and its realization through g-oscillators

We try to explore here to what extent the above procedure of relating FRT algebra
with a spectral parameter-dependent scheme may be generalized and under which
conditions it is possible. Observe that if the same problem is looked at from a different
angle, it would be equivalent to the Yang-Baxterization of the FRT algebra. The notion
of Yang-Baxterization, ie. constructing a spectral parameter-dependent R())-matrix,
with commuting matrix ¢lements and satisfying YBE (1.4), was introduced by Jones [13]
and subsequently studied by athers [14]). On the other hand the Yang-Baxterization
leading to QYBE (1.3) involving L(A) with operator-valued matrix elements has not
received much attention, though it has immense importance in integrable theories with
L(A) playing the role of Lax operators. Our aim is to investigate such possibilities
of Yang—Baxterization leading to the QYBE starting from the FRT algebra (1.1) in
analogy with the usual approach, which starts from the braid group relations. Since
for this purpose one needs to construct J2(A) as well as L{A) from objects involved
in FRT, we may proposc thc same forms (2.6), (2.7) to be valid in the general case:

R(X) = %R+ —ER™ (3.12)
L) = %LH) +eL™) (3.16)

where ¢ = e'**, with x being an arbitrary scaling constant. However we find that for
this construction, the use of FRT algebra (1.1a4) and (1.1b) alone is not sufficient for
the validity of QYBE (1.3), the inclusion of additional relation (2.9) is also nececssary.
Naturally one may wonder about the significance of this extra relation and the way it is
related to the FRT algebra. We observe that, if on the R(\)-matrix construction (3.1a)
some additional constraint is demanded given by the ‘initial’ condition R(Q) = cP
(relevant to most of the physically important quantum-integrable models) it yields a
relation like

Rt - R =cP. (3.2)

Remarkably, we find that the same spectral-parameterless condition with the use of
FRT aigebra is able to produce the additional equation (2.9). Therefore the ‘initial’
condition (3.2) may be taken instcad of (2.9) along with FRT algebra for reproducing
QYBE through the construction (3.14, b). It may also be noted that using the relation
R* = PR* and R~ = (R*)"!, one can relate (3.2) in turn to (R*)2 = cR* 41,
which is the crucial extra Hecke relation. Thus we may conclude finally that for the
Yang--Baxterization of FRT algebra leading to QYBE presented here, the R*-matrices
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must also satisfy the Hecke algebra. Similar observation regarding the role of Hecke
algebra in the construction of R( ), satisfying YBE, was made earlier by Jones [13).

We would like to show now that the Yang-Baxterization of FRT algebra can be
carricd through in the general case of gI(N) in their fundamental representations,
where R*.matrices are given by {8]

R+=qzekk®ekk+zekk®eu+(q 7)Y en®ey
k#l k<l (3'3)
- =P(R*)TP

with (ex)mn = Opm6;, and all the indices running from 1 to N. It is easy to
check that the above R*-matrix satisfies the Hecke algebra and therefore following
our above argument the construction (3.1a,b) for R(A) and L(A) should be allowed,
where (%) 1s the upper (lower) triangular matrix form with some as yet unspecified
operators T and 7 as

E e + Z T1%€k2 Lo = Z Ty €k + 2 Tk Cki- (3.4)

k<l k>t

It is worth noting that the R(A)} and L()) thus constructed, after a A-dependent
‘gauge transformation’, may be cast in the same form of [18], whete they were used
specifically in the context of Toda field theory.

However we see here that any realization of FRT algebra in some physical variables
through the above Yang—Baxterization scheme is able to generate a corresponding
quantum-integrable model. For finding such realizations of FRT algebra we express
it first in the elementwise form using (3.3) and (3.4). The resulting set of relations
represent a quadratic aigebra and may be grouped in the following way for all different
k,!,m,n indices:

Tf 7y = eFie THTf (3.5a)
T,":"le - &:FiQTIkT:: (35b)
[Tess Tix) = 2isin a7 T‘1+ - T:' ) {3.5¢)
with all diagonally placed operators 1-,2t commuting among themselves in addition to
(rE T = 0 (3.6a)
ThiTEm = € T Th (3.60)
Ty Tt = €79 T, Thy (3.6c)
[Trks Tril = 2i€sin a‘r,(c )'rm, (3.6d)

where € = sign(k — 1) + sign({ — m) + sign(m — k), TJ(CE) = 1',3: for e = £1 and

[T4is Trn) = 2ipsin et 7y, (3.7

with p = +1for ! > n > k > m (and all its cyclic inequalities), while p = —1
for the reverse inequalities and p = O otherwise. It may be noted that the above
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relations are the generalization of the extended TSA (2.4) and reduce to it at N = 2,
when only the relations (3.5) are relevant. The Casimir operators of this algebra may
be evaluated from the quantum determinant of L{)) following [3,19]. Note that
a realization of the above algebra in the generators of quantum group U (s{(N))
may be obtained using the construction of Burroughs {8), while a different realization
through canonical bosonic operators may be given from the expressions of the Lax
operator of the Toda field model [18]. However we like to present here another
interesting realization of the extended TSA (3.5)—(3.7) through recently introduced
g-oscillators [15] satisfying the commutation relations

[A,n]= A [Al,n]=-A1  AA'-—¢'A'A=¢". 3-8)

In terms of N independent, mutually commuting g-oscillator modes Ay, this realiza-
tion looks like

= :l: eFians (3.94)
e = e""/2 sin agrl Al A, (3.9b)
1"”5 = e-ialz S.l‘n QQHALAI (3.9(:)

where k& > [ with g;; = exp[(ia/2)(ny + n; + 22 -I+1 n;)} . One may observe
that these expressions are similar to the Schwinger- type reahzanon of quantum group
[15]. On the other hand in analogy with the g-Holstein-Primakoff transformation of
U, (SU(N}) [20] yet another realization of the extended TsA is possible to construct
th:ough only (VN — 1) independent g-oscillators. Leaving out the details we just

mention that such constructions may be obtained straight away from (3.9) by replacing
formally
N
n, —-os-—an A, ﬁ—e(ialz)(l_s)([m]q)%
k=2

b
[¢]

4. Multiparameter deformation of the extended TSA and its g-oscillator realization

Let us see now whether the above Yang-Baxterization scheme is also applicable to the
case of multiparameter quantum groups and the corresponding deformed R-matrices
[9-11]. Such deformed spectral-paramecterless R*-matrices may be considered as
‘gauge transformation’ of the standard one-parameter version (3.3), which in funda-
mental representation of gi(/N) takes the form [10, 11]

R(¢)—qzekk®ekk+ze¢'"‘ekk®eu+(q—fI DY en®en
oy k<l @1
- Fa=1
Ry =P(R3)

having N(N -1)/2 deforming parameters ¢, with the antisymmetric property
b1 = —¢dy.. As explained in section 3, we recall that the extra Hecke relation
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(3.2) along with the FRT algebra is necessary for our Yang-Baxterization leading to
QYBE. One ecasily checks that the R( »y-matrices (4.1) satisfy such Hecke algebra and
therefore for this deformed case also we may carry through the construction of -
dependent R(A) and L(A) using (3.1a) and (3.156). The resultant explicit form of
R(A) is

Riy(A) = (g — &9 I)Zekk®ekk+(‘f -6 e @0

k£l

+(q—Q'l)(‘f—lzekr®erk+fzekr®erk) (4.2)

ki k>l

which shows, interestingly, that the multiparameter deformation of R*-matrix [10, 11]
can also be extended to the spectral parameter dependent case. If the constituent
L) operators of the COi'i'ES'pOi”luulg L{X) are taken in the same form as in the unde-
formed case (3.4) replacing only r-operators by 7, the algebraic relations (3.5)-(3.7)
suffer significant deformations dictated by the QYBE (1.3), leading to a multiparame-
ter generalization of the extended TSA. The previous Weyl-type relations now acquire
extra phase factors in the form

FEFy, = etlatitng 7t FEF, = eTlomiong, 7 F @3)
Fafiem = OO R Ry iy = 70T E (4.4)

while the relations involving commutators are distorted as

el¢mi gty _eluz #E=g (4.5a)
P FL Ty — e TN F o = 2isin a(FL R - FYFT) (4.5b)
ePmhF Ty — c'ok FriTme = 2i€sin a‘?,(:)‘?m; (4.6)
etkmi P eitni Fo = 2psinaf, Fy . 4.7)

Remarkably we may find again a realization for this multiparameter deformed case
in g-oscillators, just from (3.9) through the following transformation

-Fki = exp li qukjan 'rf

i#k

"’kx—eXP[ ( ¢kr+z¢’m”;+z¢r; J)]TH

iEk i#l

(4.8)

which consequently gives another realization of the FRT algebra through g-oscillators
including deforming parameters. We also like to note that realization (4.8), through
the connection between q-osciliators and g-groups [15,20], provides the possibility
of realising the FRT algebra in quantum group generators of U (SU(N)) in the
multiparametric case. One observes further that the realization (4.8) when inserted in
(3.4), can generate quantum-integrable models involving g-oscillators having the Lax
operator (3.1b) corresponding to the multiparametrized R-matrix (4.2). Morcover,
it is also evident that the deformed algebra (4.3)-(4.7) gets much simplified for the
particular choice of parameters ¢,; = +a and interestingly, this particular situation
was found to be significant in the context of integrable models like Ablowitz-Ladik
model, relativistic Toda chain etc [12].
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5. Concluding remarks

In constrast to the usual Yang-Baxterization of the Braid group representation leading
t0 YBE (1.4}, we have discussed here a Yang-Baxterization scheme of the Faddeev—
Reshetikhin-Takhtajan algebra leading to quantum YBE (1.3), a central relation in
quantum-integrable systems. This scheme is considered for a class of R-matrices
satisfying the Hecke relations and applied in particular to the gi(N) case along with
its multiparametric deformations. As a by-product a spectral parameter-dependent
multiparametrized R-matrix is constructed. An intimate connection of FRT realtions
with the extended trigonometric Sklyanin algebra and its multiparameter deformation
is revealed, which helps us to find interesting realizations of the FRT algebra through
q-oscillators. Using such realizations and with the help of the Yang-Baxterization

procedure discussed here, one may construct Lax operators potentially important in
the context of gquantum integrable systems [12, 211,

Recently a non-standard braid group representation has been considered resulting
in a new formulation of quantum group through FRT algebra [22]. However, since
such exotic types of R-matrices {22, 23] obey the extra Hecke condition, the present
approach is also applicable to them and might lead to new quantum-integrable models.
It should also be interesting to investigate possible extensions of this scheme for the
braid group representations satisfying other relations like Birman-Murakami-Wenzl
algebra [13].
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